Hereditary Spastic Paraplegia – clinico-genetic lessons from 608 patients

Rebecca Schüle MD1,2,3*, Sarah Wiethoff MD1,4*, Peter Martus5, Kathrin N Karle MD1,2,6, Susanne Otto MD7, Stephan Klebe MD8,9,10, Sven Klimpe MD11,12, Constanze Gallenmüller MD13,14,15, Delia Kurzwelly MD16,17, Dorothea Henkel MD18,19 Florian Rimmele MD20,21, Henning Stolze MD9,22, Zacharias Kohl MD23, Jan Kassubek MD24, Thomas Klockgether MD16,17, Stefan Vielhaber MD18,19, Christoph Kamm MD20,21, Thomas Klopstock MD13,14,15, Peter Bauer25, Stephan Züchner3, Inga Liepelt-Scarfone PhD1,2, and Ludger Schöls MD1,2

1Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, Tübingen, Germany
2German Center of Neurodegenerative Diseases (DZNE), Eberhard-Karls-University, Tübingen, Germany
3Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
4Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
5Institute for Clinical Epidemiology and Applied Biostatistics, Eberhard Karls University Tübingen, Germany
6Department of Psychiatry and Psychotherapy, Eberhard-Karls-University, Tübingen, Germany
7St. Josef Hospital, Bochum, Ruhr-University Bochum, Department of Neurology, Bochum, Germany
8University Hospital Würzburg, Department for Neurology, Würzburg, Germany

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as an ‘Accepted Article’, doi: 10.1002/ana.24611
Schüle et al. Key Concepts in Hereditary Spastic Paraplegia

University Hospital Schleswig-Holstein, Campus Kiel, Department of Neurology, Kiel, Germany

University Hospital Freiburg, Department for Neurology, Freiburg, Germany

Horst Schmidt Kliniken Wiesbaden, Department of Neurology, Wiesbaden, Germany

University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany

Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany

Munich Cluster for Systems Neurology (SyNergy), Munich, Germany

German Center of Neurodegenerative Diseases (DZNE), Ludwig-Maximilians-University, Munich, Germany

Department of Neurology, University Hospital Bonn, Bonn, Germany

German Center for Neurodegenerative Disorder (DZNE), Bonn, Germany

Department of Neurology, Otto-von-Guericke-University, Magdeburg, Germany

German Center of Neurodegenerative Diseases (DZNE), Magdeburg, Germany

Department of Neurology, University of Rostock, Germany

German Center of Neurodegenerative Diseases (DZNE), Rostock, Germany

Diakonissenkrankenhaus Flensburg, Neurology Clinics, Flensburg

Department of Molecular Neurology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany

Department of Neurology, University of Ulm, Ulm, Germany

Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany

These authors contributed equally to the work
Schüle et al.

Key Concepts in Hereditary Spastic Paraplegia

ABSTRACT

Objective: Hereditary spastic paraplegias (HSPs) are genetically driven disorders with the hallmark of progressive spastic gait disturbance. To investigate phenotypic spectrum, prognostic factors and genotype specific differences we analyzed baseline data of a continuous, prospective cohort.

Methods: We recruited 608 HSP cases from 519 families of mostly German origin. Clinical severity was assessed by Spastic Paraplegia Rating Scale (SPRS). Complicating symptoms were recorded by a standardized inventory.

Results: Family history indicated dominant (43%), recessive (10%) and simplex (47%) disease. We observed a significant male predominance, particularly in simplex cases without a genetic diagnosis. Disease severity increased with disease duration. Earlier disease onset was associated with less severe disease. Specific complicating features including cognitive impairment, extrapyramidal or peripheral motor involvement, and ataxia were associated with higher disease severity. Disease severity also depended on the genotype. HSP cases maintained the ability to walk independently for a median disease duration of 22 years. Early onset cases were able to maintain free walking significantly longer and were at less risk to become wheelchair dependent.

Interpretation: This cross-sectional cohort study provides first large-scale data on disease manifestation, progression and modifying factors with relevance for counseling of HSP families and planning of future cross-sectional and natural history studies. Later age of onset, specific complicating features and the SPG11 genotype are strongly associated with more severe disease. Future interventional studies will require stratification for modifiers of disease progression identified in this study. Prospective longitudinal studies will verify progression rates calculated in this baseline analysis.
Keywords: Hereditary spastic paraplegia, disease progression, independent ambulation, cross-sectional cohort-study, spastic paraplegia rating scale (SPRS)

Introduction

Hereditary spastic paraplegias (HSPs) are genetically driven disorders with the clinical hallmark of progressive spastic paraparesis. They can be inherited in an autosomal-dominant, autosomal-recessive or X-linked manner with more than 80 published genes or loci.1, 2 Since Anita Harding’s classification, HSPs have been divided into pure or complicated forms. An isolated pyramidal syndrome characterizes “pure” HSP, although neurogenic bladder disturbances and impairment of vibration sense may occur. Additional system involvement (cognitive impairment, ataxia, basal ganglia symptoms, visual or auditory disturbances, symptoms of peripheral nerve involvement) defines “complicated” forms of HSP and is assumed to be associated with a more severe disease course.3, 4

Since HSPs are orphan diseases with a collective prevalence of 2-10/100.0005-7, systematic clinico-genetic studies in large cohorts are missing. However, smaller genotype-specific clinical series have given important insights into phenotypic presentation, frequency and mutational spectrum.8-18

Here we present an in-depth clinical and genetic characterization of a continuous, unselected cohort of 608 HSP patients. Conclusions drawn from this cohort can guide diagnostic testing strategies and improve counseling of HSP patients and their families. Major determinants of disease severity revealed in the current study are of importance for stratification of study cohorts in clinical trials.

Patients and Methods

Cohort and genetic workup

A total of 608 HSP patients from 519 families was consecutively enrolled in a continuous series by the GeNeMove and DZNE centers in Bonn, Bochum, Magdeburg, Mainz, München, Regensburg, Rostock, Tübingen and Ulm (Table 1). The vast majority of cases was German
and had a non-consanguineous family background. Patients fulfilling the clinical diagnostic criteria \(^{32}\) for HSP were included irrespective of their genetic diagnosis. In simplex cases we excluded structural lesions and inflammatory CNS disease by MRI of brain/spinal cord and CSF analysis, and examined vitamin B12 levels and HTLV1+2 serology.

To delineate the specific HSP syndrome we performed biochemical and genetic tests. We systematically screened for deficiency of lysosomal enzymes (arylsulfatase A, \(\beta\)-galactosidase, \(\beta\)-hexosaminidase A/B, \(\beta\)-galacto-cerebrosidase, \(\beta\)-gluco-cerebrosidase) and elevated levels of very long chain fatty acids (VLCFA). Gene-by-gene genetic diagnostic testing was performed according to the mode of inheritance, age of onset, and phenotypic expression in the family, considering published frequency and phenotypes of genetic subtypes. Furthermore, results from several research screenings were taken into account; details on study populations in these screenings can be found in the respective publications\(^ {13, 16, 19-30}\). In addition to single gene testing, all autosomal-dominant HSP genes were screened by a re-sequencing microarray in 27 families.\(^ {26}\) All known HSP genes and further genes causing spastic phenotypes (98 genes in total) were analyzed in 12 families using a diagnostic grade NGS-based HSP panel available at the University of Tübingen. In 58 families, whole exome sequencing was performed at the University of Miami using Agilent SureSelect 50Mb capture and Illumina HiSeq 2000 and 2500 devices.\(^ {31}\) In summary, we were able to identify the genetic diagnosis in 240/519 families. For the remaining 279 index cases, genetic tests are detailed in Table 2.

Written informed consent was obtained from all study participants; the local IRBs approved the study.

Clinical history and neurological examination

To quantify clinical severity and screen for complicating symptoms, we used the Spastic Paraplegia Rating Scale (SPRS) and a standardized inventory for complicating signs and
Schüle et al. Key Concepts in Hereditary Spastic Paraplegia

SPRS scores range from zero (no disease manifestation) to a maximum of 52 points (most severe disease manifestation). All investigators were trained in the application of the SPRS. Additional neurophysiological, neuropsychological or imaging findings are beyond the scope of this study and were not systematically analyzed. For all cases the first available SPRS examination was selected and age at examination and disease duration are reported according to that time point throughout the manuscript.

Mode of inheritance was classified as dominant when HSP was reported in more than one generation. Families with several affected members in just one generation were classified as apparently recessive and cases with negative family history as simplex. In many of the smaller families, family structure did not allow to determine the likelihood of X-linked inheritance. These families were therefore subsumed under the respective autosomal modes of inheritance.

Disease onset was defined as the onset of the gait disturbance; in cases of conflicting information between personal history, third party history or medical records, the examiner made a best judgment decision. This was achieved with sufficient certainty in all but 21 cases.

Statistical analysis

Quantitative features are reported as mean and standard deviation for normally distributed data and median and interquartile range (IQR) for not normally distributed data. Normal distribution was evaluated by visual inspection of the variable distribution and its skewness and kurtosis. As most analyses were done for all cases, confirmatory but not descriptive statistical analyses accounted for clustering effects within families. For this, the method of Generalized Estimating Equations (GEEs) with independent working correlation matrix and sandwich estimator for standard errors was used. Confidence limits for prevalence based on clustered data were determined using logistic regression models with intercept only. To compare categorical variables across groups we applied logistic regression analysis, to identify predictors for the SPRS score we applied linear regression analysis, and to assess the
influence of clinical parameters on walking ability we applied Cox proportional hazard analysis (each adjusted for cluster effects). Descriptive analysis for censored data was done using the Kaplan Meier Method. A \(p \)-value of < 0.05 was considered statistically significant. SPSSWIN 21.0 (GEE linear and logistic model) and R release 3.1.2 (package survival, GEE for censored data) for windows was used for statistical calculations and JMP v11 for Mac was used for graph generation. To remove potential bias due to possible family clustering effects, 1 member of each family was randomly selected (random number generator of SPSSWIN) for the generation of graphs in figures 1, 3 and 4.

Results

Baseline demographics

We included 608 patients from 519 families in the study (Table 1). Family history suggested dominant inheritance in 43%, a recessive trait in 10%, and isolated disease in 47% of families.

Gender distribution

Gender distribution was unequal with a significantly larger proportion of males than females in the total cohort (OR = 1.2, male/female 0.55/0.45, \(p = 0.015 \), Table 1). However, when considering only families with confirmed mutations in autosomal HSP genes, no significant differences in gender distribution were noted. In contrast, males were strongly overrepresented in simplex HSP cases without a genetic diagnosis (OR = 1.5, male/female 0.60/0.40, \(p = 0.009 \)).

Age of onset

Age of onset ranged from 0 to 73 years with a mean of 30.8 years (SD 18.0). The distribution was bimodal with a first peak in early childhood (< 5 years in 11%) and a second peak around age 40 (Fig 1A). Gender did not significantly influence the age of onset. Onset in simplex cases was later than in dominant or recessive cases (Fig 1B, Table 1).
To determine the influence of the genotype on age of onset we performed a subgroup analysis for the five most frequent genotypes in our cohort (SPG3, SPG4, SPG5, SPG7, SPG11, Fig 2). All genotypes, even those typically considered being early onset forms of HSP, showed a wide age of onset spectrum ranging from childhood well into adulthood. SPG7 manifested later than all other four genotypes. SPG4, while manifesting about 7 years earlier than SPG7, had a significantly later onset than the early onset genotypes SPG3, SPG5 and SPG11 (Fig 1C). All age of onset comparisons were corrected for possible cluster effects within families using GEE.

Genotype distribution

Among 519 index patients the underlying genotype was identified in 46% (240 families, Fig 2A+B). 37% (83 of 222) of dominant families, 39% (21 of 54) of recessive index cases, and 72% (175/243) of simplex cases remained without a genetic diagnosis (Table 1 and Table 2).

SPG4 was by far the most common genotype and was diagnosed in 196 cases from 149 families. When used as a first-line diagnostic test in dominant cases, the diagnostic yield was 61% (121/197 dominant index cases tested for SPG4), including 25 families with macro-deletions of the *SPAST* gene diagnosed by MLPA (21% of our autosomal-dominant SPG4 cohort). In simplex cases, *SPAST* mutations were found in 15% (24/161 simplex index cases tested for SPG4) with a similar proportion of genomic deletions (17%, 4/24) as in dominant families. Four apparently recessive cases carried pathogenic SPG4 mutations, demonstrating reduced penetrance in the parent generation.

The overall diagnostic yield for SPG3 in SPG4-negative dominant index cases was 7% (5/68; 8 SPG4-negative dominant index cases were not tested for SPG3). In previous series, SPG3 has been identified in ~40% of autosomal index cases with a disease onset before the age of 10. In our cohort, 41 dominant index patients had an onset in the first decade. In 27 of these,
SPG3 was tested and revealed mutations in 5 (5/27, 19%) families. SPAST mutations were considerably more frequent in this subgroup (13/34 index cases tested for SPG4, 38%).

In 63 families (28 with recessive family history and 35 simplex cases) we identified causal variants in recessive genes. This group demonstrated high genetic heterogeneity with mutations in 13 different genes. The most common genotype was SPG7 (25 families), followed by SPG11 (12 families) and SPG5 (9 families) (Fig 2A+B).

Interestingly, nine index cases had pathogenic mutations in genes not listed as SPG genes by the Human Gene Organization. We identified five cases with adrenomyeloneuropathy and one case each with Krabbe disease, mutations in BICD2, SACS and SYNE1.

In 279 families the genetic etiology remained unknown. Table 2 gives an overview of the genetic tests performed in this subgroup.

Frequency of complicating signs and symptoms

Three quarters of patients (75%) had an involvement of neurological systems exceeding upper motor neuron involvement. Sensory involvement was present in > 50% of all patients, ataxia in almost one third (28%), and peripheral motor involvement (i.e. loss of stretch reflexes or muscle atrophy) in 19% (Fig 3A). Fifty eight percent had additional symptoms other than impairment of vibration sense and/or bladder disturbances and were therefore classified as complicated HSP (Table 1).

Next we compared the frequency of complicated vs pure HSP in dependence on mode of inheritance. Complicated disease manifestations were most common in recessive cases, followed by simplex cases (Table 1). In contrast, pure disease manifestations predominated in dominant cases. This was true for the total cohort of 608 cases as well as for the subgroup of genetically confirmed cases (n = 299).
We then analyzed whether the frequency of specific complicating symptoms differs across the most common genotypes SPG3, SPG4, SPG5, SPG7, and SPG11. As the genotype was identical for patients from the same family and presence or absence of complicating symptoms was nearly identical within families the generalized estimating approach was not feasible. Thus we analyzed families instead of single patients. In the rare cases where symptoms differed between members of the same family, we rated a family ‘positive’ if at least one member of the family showed the respective sign or symptom.

Significant associations between genotypes and complicating symptoms were identified for cognitive impairment, dysarthria, cerebellar involvement and extrapyramidal involvement (Pearson Chi-square, adjusted p-value 0.005). We then performed pairwise comparisons for each genotype and complicating symptoms. Frequency of complicating symptoms for each genotype and significant differences (adjusted p-value p < 0.0001) are detailed in Fig 3B and Table 3.

Use of gait assistive devices and loss of ambulation

At the time of investigation (median disease duration 14 years), 582 participants (96%) were still able to walk for at least 10 metres. 385 (63%) were able to walk independently, whereas 197 (32%) needed canes or walkers; only 26 participants (4%) had completely lost their ability to walk. Seventy participants (12%) reported to use a wheelchair on a regular basis.

To assess the risk to become dependent on a walking aid or wheelchair we performed a Kaplan-Meier analysis. After disease durations of 10 / 20 / 30 /40 years, respectively, 25 / 48 / 64 / 72% of patients regularly used a walking aid. The median disease duration until loss of independent walking was 22 years. (Fig 4A, red line).

The proportion of patients using a wheelchair was much smaller, i.e. 10 / 20 / 30 / 40 years into the disease, 5 / 12 / 18 / 29% of patients depended on a wheelchair in daily life. After a
disease duration of 37 years, only one quarter of patients regularly used a wheelchair (Fig 4B, red line). Of patients using a walking aid, the median time until they moved on to use a wheelchair was 16 years.

Factors associated with earlier loss of independent walking

We analyzed whether age of onset or gender are associated with the risk to become walking aid or wheelchair dependent. Later age of onset was strongly associated with loss of independent walking earlier in the disease course (HR\(_{10\text{years}}\) = 1.676, CI = [1.538 – 1.842], p < 0.001). To rule out that this effect was driven by the possible presence of alternative diagnoses especially in cases without genetically confirmed HSP, we repeated the analysis in the subgroup of cases with confirmed mutations in HSP genes. The same association between late disease onset and earlier loss of independent walking ability was observed in this subgroup (HR\(_{10\text{years}}\) = 1.583, CI = [1.397 – 1.774], p < 0.001, Fig 4A middle grey line). Finally, we considered that the underlying genotype rather than the age of onset per se contribute to this effect. As SPG4 is the only genotype frequent enough in our cohort to perform a genotype-specific subgroup analysis we performed a clustered survival analysis in the SPG4 sub-cohort (n = 196), whereof 96 patients became walking aid dependent during the observation time-frame. And indeed, even in this genotype specific subgroup later disease onset was associated with earlier walking aid dependency (HR\(_{10\text{years}}\) = 1.583, CI = [1.357 – 1.842], p < 0.001).

Similarly, cases with a later age of onset became wheelchair dependent earlier in the disease course; this association was significant in the total cohort (HR\(_{10\text{years}}\) = 1.195, CI = [1.020 – 1.411], p = 0.029) as well as in the subgroups of genetically confirmed cases (HR\(_{10\text{years}}\) = 1.243, CI = [1.000 – 1.538], p = 0.047) and SPG4 cases (HR\(_{10\text{years}}\) = 1.452, CI = [1.072 – 1.967], p = 0.016), despite the small sample sizes in these sub-cohorts (e.g. 39 / 22 events in genetically confirmed / SPG4 cases).
Gender was not associated with the risk to become walking aid or wheelchair dependent during the course of the disease, neither in the total cohort, nor in the subgroups of genetically confirmed or SPG4 cases.

Factors associated with more severe disease

Association of Age of onset, Disease Duration, and Genotype with Disease Severity

To explore factors associated with disease severity we performed a multivariate linear regression with disease severity (total SPRS score) as the dependent and gender, disease duration and age of onset as independent variables. The best model was reached after adding disease duration squared as additional independent variable, yielding a combined regression coefficient r^2 of 0.163 ($p < 0.001$). Disease duration had the strongest effect on disease severity ($B = 0.404$, $p < 0.001$, B – non-standardized coefficient of linear regression), followed by age of onset ($B = 0.104$, $p < 0.001$). Longer disease durations as well as later age of onset were hereby associated with more severe disease. Women were slightly more severely affected than men ($B = 1.504$, $p = 0.041$).

We then repeated the analysis within the subgroup of cases with genetically confirmed diagnosis. Again, disease duration remained the strongest determinant of disease severity, followed by age of onset. Gender effects were no longer significant, were however observed at about the same magnitude as for the total cohort ($B = 1.672$, $p = 0.126$).

Finally, we added the five most common genotypes in our cohort to the model. SPG11 cases were much more severely affected than the other four genotypes and SPG5 also showed a tendency towards a more unfavorable disease course ($B = 5.368$, $p = 0.051$). In particular, SPG5 cases were significantly more severely affected than SPG3 cases ($B = 7.763$, $p = 0.001$).
Next, we analyzed whether complicating signs and symptoms are associated with a more severe disease. As we have shown that disease duration and age of onset are strongly associated with disease severity, we generated a multiple linear model in analogy to the model above with SPRS score as the dependent and disease duration, disease duration squared and age of onset as independent variables, again using GEEs to control for cluster effects within families. Presence of complicating symptoms according to the criteria proposed by Anita Harding was strongly associated with more severe disease ($B = 3.424$, $p < 0.001$). When added independently to the model, dysphagia, cognitive impairment, extrapyramidal involvement, peripheral motor involvement, dysarthria, sensory involvement, ataxia and psychosis were associated with higher SPRS scores, indicating more severe disease (ordered by decreasing effect size, Table 3).

Discussion

Since Anita Harding’s landmark paper on classification of HSPs and hereditary ataxias in 1983 we derive our clinical knowledge mostly from small genotype-specific studies and anecdotal expert testimonies transmitted via clinical and genetic reviews. This has led to two major shortcomings: 1) some clinical observations from smaller-scale studies are insufficiently substantiated by statistical evidence, and 2) as hardly any of the existing clinical studies on HSP use standardized and validated outcome measures conclusions from these studies are of limited use for planning and execution of clinical trials. The need for ‘trial readiness’ however is increasingly recognized in rare diseases. Results and conclusions from this large continuous cohort of HSP cases characterized by standardized and validated measures to capture phenotype and major determinants of disease severity are an essential first step towards trial readiness and represent the baseline data for an ongoing natural history study in HSP.
Mode of inheritance

HSPs are generally perceived as Mendelian diseases. Similar to existing studies in cohorts of simplex HSP cases\(^25\), \(^36\), \(^37\) with negative family history we identified mutations in known autosomal-dominant, autosomal-recessive and X-linked genes in 28% of simplex cases in our cohort. However, 72% of simplex cases remained without genetic diagnosis, including 35 (out of 47) cases where whole exome sequencing was performed. Although mutations missed by whole exome sequencing or mutations in as yet unknown HSP genes and the presence of phenocopies in our cohort might contribute to this high number of genetically unsolved simplex cases, we believe that non-Mendelian modes of inheritance in HSP may also be hidden contributors. In the same vein, complex or digenic modes of inheritance have recently been described in several diseases with predominantly Mendelian inheritance, including Alport syndrome, facioscapulohumeral muscular dystrophy, hereditary optic atrophy and hereditary ataxias\(^38\)-\(^41\).

Age of onset

Age of onset is highly variable in HSP and ranged from the first to the eighth decade in genetically confirmed cases of our series. This wide spectrum observed in all genotypes and all modes of inheritance hampers phenotype-genotype predictions in individual cases. Mutation-specific effects and contribution of genetic and non-genetic modifiers on phenotypic expression may explain this variability but have hardly been studied in HSP so far. Childhood onset does not reliably predict autosomal-recessive inheritance in HSP – a notion that is believed to be true for other hereditary neurological disorders like cerebellar ataxias.\(^42\) Almost half of the cases presenting as childhood onset HSP report a dominant family history and three quarters of genetically solved childhood onset cases are explained by mutations in autosomal-dominant HSP genes.

Gender distribution
We observed a significant male predominance in our cohort that was mainly driven by a high proportion of males (60%) in the subgroup of simplex cases without a genetic diagnosis. We consider most likely that as yet unknown X-linked genetic factors strongly contribute to this effect as mutations in the four known X-chromosomal HSP genes (*L1CAM, PLP1, SLC16A2, ABCD1*) typically cause characteristic complicated phenotypes at least in males. We therefore hypothesize the presence of further X-chromosomal HSP genes with relevant proportional contribution to HSP.

Interestingly, a trend towards male preponderance was also observed in dominant cases and has been reported previously for SPG4.43 It has been discussed whether higher disease penetrance in males, as has been reported for some specific *ATL1* and *SPAST* mutations44 may cause this gender imbalance. However, our finding that gender is equally distributed among the subgroup of cases with confirmed mutations in autosomal genes argues against this notion.

Genotype distribution

In accordance with earlier studies45, 46, SPG4 was found to be the by far most common form of HSP regardless of inheritance mode, followed by SPG7 and SPG11.10, 11, 15, 36, 47, 48 Previous studies in selected cohorts suggest that SPG3 is the main cause of childhood-onset dominant HSP.17 In our unbiased continuous cohort we found SPG4 to be about twice as common in this subgroup than SPG3. Different genotype distributions among tested nationalities (French vs German) may contribute to these discrepant findings.

Despite our extensive efforts, almost 50% of HSP patients remained genetically unsolved with a particularly low diagnostic success rate in simplex cases (28%). Even in the 97 patients in whom all relevant known genes were examined by panel or whole exome sequencing, 72 remained without a diagnosis. The portion of unsolved cases in this group is particularly high.
due to prior exclusion of common HSP genes by single-gene testing. Together these findings suggest that further HSP genes remain to be identified.

Mutations in non-SPG genes

Despite stringent inclusion criteria we found several patients with mutations in non-SPG genes whose frequency may even be underestimated by our approach since these genes have not been investigated systematically. However, not all hereditary diseases causing spasticity are registered with an SPG number by the Human Gene Organization.\(^{34}\) X-linked adrenomyeloneuropathy, Krabbe and Alexander disease as well as spastic variants of hereditary ataxias (e.g. autosomal-recessive spastic ataxia Charlevoix Saguenay (ARSACS)\(^{49}\), late onset Friedreich’s ataxia \(^{50}, 51\) and autosomal-dominantly inherited spinocerebellar ataxias type 1, 3 or 7) \(^{52}\) may mimic HSP.\(^{53}\) These genes therefore need to be considered in the genetic differential diagnosis of HSP.

Progression of gait disturbance

To our knowledge the question, in what timeframe and at what proportion of cases HSP leads to walking aid and wheelchair dependency has never been addressed in a systematic way in a large cohort before. This contrasts with the impact of loss of ambulation on the lives of affected patients. We demonstrate that even after a disease duration of 40 years, about one quarter of HSP patients is still walking without walking aids and less than one third depends on a wheelchair in daily life. The earlier the age of onset, the longer the ability to walk independently is retained over the course of the disease. The fact that this association of early disease onset and later walking aid or wheelchair dependency is also present within the subgroup of SPG4 cases demonstrates that this association is not merely a consequence of the underlying genotype but reflects a more general characteristic of disease evolution in HSP. Although this data needs validation in prospective longitudinal cohort studies, they might
prompt counseling of patients towards a more favorable disease course than previously assumed.

Complicating symptoms

Almost 60% of patients in our cohort presented with a complicated phenotype according to Harding. The clinical classification of HSP as proposed by Anita Harding and adapted in numerous genotype-phenotype studies over time follows the assumption that reliable prediction of a genotype based on specific phenotypic features is possible. Although limited sample size and the need to correct for multiple comparisons limit our power to support the frequency distribution of complicating signs and symptoms across genotypes (Fig 3) statistically, our data support rather typical disease presentations for SPG11 and to some extent SPG5 and SPG7. For the majority of genetic subtypes however, age of onset and phenotypic expression are extremely broad. Not a single genotype in our study presented exclusively with pure HSP.

Factors associated with more severe disease

Objective measures of disease progression are valuable tools to plan cohort size and duration of clinical trials. In HSP data on larger cohorts using measures validated for HSP are essentially missing. To our knowledge there is only one study evaluating cross-sectional and longitudinal disease progression in HSP. The informative power of this study however is limited due to the small sample size (n=64) and the choice of outcome parameters, none of which is validated in HSP. Using the Spastic Paraplegia Rating Scale (SPRS), a clinical rating scale validated to measure disease severity in pure and complicated forms of HSP, we here present the baseline data of an ongoing natural history study. This data allows us to identify factors associated with higher SPRS scores and thus more severe disease.

Age of onset and disease duration showed the strongest effect on disease severity whereby late age of onset and longer disease durations were associated with higher SPRS scores. These
findings thus corroborate our findings on the favorable influence of early disease onset on the ability to walk unaided. This data for HSP is however in contrast to studies in other neurodegenerative diseases including spinocerebellar ataxias55, Friedreich’s ataxia56, 57, and Huntington’s disease58 that all demonstrate faster disease progression in earlier onset cases. Future longitudinal studies will clarify the role of potentially underlying neurodevelopmental defects in early onset cases and whether progression rate of HSPs remains linear over the disease course.

As suspected, complicated HSP is associated with a more severe disease. Nonetheless, not all complicating signs and symptoms were found to contribute to this effect. Cognitive impairment, dysphagia, dysarthria, extrapyramidal and peripheral motor involvement were found to be most strongly associated with more severe disease. It is however likely that not the complicating symptom per se but the pathomechanism associated with a specific genotype is the true driving force behind disease progression. Complicating features may therefore be indicators of this underlying pathomechanism. Indeed we were able to demonstrate association of genotype with disease severity with more severe disease in SPG11 and SPG5 compared to SPG3, SPG4 and SPG7. Stratification for phenotypic expression in larger cohorts with a specific genotype will be needed to study this effect.

Limitations

The cross-sectional design of this study does not allow reliable calculation of disease progression rates. This is mostly due to the multiple biases influencing the retrospective determination of age of onset and thus disease duration in HSP. Longitudinal studies will therefore be needed to establish progression rates in HSP and determine whether the non-linear increase in disease severity in later disease stages reflects true disease evolution in HSP or represents an artifact of the cross-sectional study design, e.g. due to recall bias or imprecise determination of age of onset. Furthermore, our study is limited by the large proportion of
genetically unsolved cases which results partly from incomplete screening of all >50 known HSP genes and partly from the likely contribution of yet unidentified HSP genes.

Conclusion

In this large-scale cross-sectional cohort study we demonstrate that the majority of HSP patients does not become wheelchair dependent even decades into the disease. Early age of onset was associated with a more favorable prognosis. In addition to disease duration, age of onset, genotype and specific complicating symptoms were identified as main factors associated with disease severity. Our data provide guidance for future interventional studies that require stratification for modifiers of disease severity and potentially progression identified in this study. Longitudinal studies are on the way to verify progression rates and provide prospective natural history data in a representative cohort of HSP patients.

Acknowledgements

We thank the HSP patients and their families for participation and Ales Dudesek, Anne-Dörte Sperfeld, Jürgen Winkler and Beate Winner for contribution of patients to this study.

This study was supported by the German Ministry of Education and Research (BMBF) through funding for the German Network for Movement Disorders (GeNeMove; grant 01GM0603 to L.S.), an E-RARE grant of the German Ministry for Education and Research (BMBF) to the EUROSPA project (grant 01GM0807 to L.S.), the European Union within the 7th European Community Framework Programme through funding for the NEUROMICS network (F5-2012-305121 to L.S.), the E-Rare Network NEUROLIPID (01GM1408B to RS) and a Marie Curie International Outgoing Fellowship (grant PIOF-GA-2012-326681 to R.S. and L.S.), the Center for Clinical Research (IZKF) Tübingen (grant 1970-0-0 to R.S.), the German HSP-Selbsthilfegruppe e.V. (grant to R.S. and L.S.), the DZNE intersite project (grant to L.S., T.K. (Munich), T.K. (Bonn), C.K. and S.V.) and the Spastic Paraplegia Foundation Inc. (grant to R.S. and L.S.).
Schüle et al.

Key Concepts in Hereditary Spastic Paraplegia

Author Contributions

Concept and design of the study: RS, SW, PM, SZ, LS

Data acquisition: All. Data analysis: All

Drafting the manuscript: All. Drafting of figures: RS, SW, LS

Potential Conflicts of Interest

The authors have nothing to disclose.

References

Schüle et al. Key Concepts in Hereditary Spastic Paraplegia

53. Muller vom Hagen J, Karle KN, Schule R, Krageloh-Mann I, Schols L. Leukodystrophies underlying cryptic spastic paraparesis: frequency and phenotype in 76 patients. European journal of...

Figure Legends

Figure 1: Age of onset distribution in HSP

A. Age of onset distribution in HSP patients followed a bimodal distribution with a first peak in early childhood (< 5 years in 11%) and a second peak around age 40. The horizontal boxplot on top illustrates the age of onset distribution with minimum, first quartile, median, third quartile and maximum. The mean diamond indicates the mean (30.8 years) and the upper and lower 95% confidence interval of the mean.

B. Age of onset varied in dependence on mode of inheritance with later onset in simplex cases than in dominant or recessive cases. The Y-extent of the irregular shapes indicates
the proportion of cases with a particular mode of inheritance (red—dominant; green—recessive; blue—simplex) with a given age of onset (left). The frequency of dominant and recessive inheritance decreases with increasing age of onset (right). In contrast, negative family history is more frequent with later age of onset. All modes of inheritance however can be observed across the whole age of onset spectrum.

C. **Age of onset is influenced by the genotype.** Age of onset varies in dependence on the genotype. Median age of onset in years and the interquartile range are given on the right. One affected family member from each family was randomly selected for preparation of this figure to avoid potential bias due to family clustering effects.

Figure 2: Genotype distribution in the study cohort

A. **Genotype distribution in 519 HSP families.** Of the 519 HSP families, the diagnosis was genetically confirmed in 240. The number of families for each genotype is listed separated by a semicolon. Autosomal dominant genes are depicted in shades of yellow, autosomal recessive genes in shades of blue and X-linked genes in shades of green.

B. **Genotype distribution in HSP cases and families.** The table lists the number of cases and families included for each genotype. The total number of solved families/cases is 240/299.

Figure 3: Frequency of complicating signs and symptoms

A. **Frequency of complicating signs and symptoms.** Bars indicate the proportion of patients with a given sign or symptom of the total (n = 519). One affected family member from each family was randomly selected for preparation of this figure to avoid potential bias due to family clustering effects.
B. **Complicating signs and symptoms in selected genotypes.** Mosaic plots demonstrating the frequency of selected complicating signs and symptoms in the five most common genotypes in our cohort (SPG3, SPG4, SPG5, SPG7, SPG11) are shown. The area of the tiles is proportional to the number of cases within that category. Pairwise comparisons were performed between genotypes. Significant differences (adjusted p < 0.0001) are indicated by horizontal lines on top of each plot; all other comparisons were not significant.

Figure 4: Kaplan-Meier Analysis

A. **Loss of independent walking.** HSP cases lose the ability to walk independently after a median disease duration of 22 years ([black line](#)). For the subgroups of HSP cases with genetically confirmed diagnosis ([middle grey line](#)) and simplex cases without a genetic diagnosis ([light grey line](#)) the time course of walking aid dependency is virtually indistinguishable from the total cohort.

B. **Wheelchair dependency.** After a disease duration of 37 years, one quarter of patients is dependent on a wheelchair ([black line](#)). Again, the subgroups of genetically confirmed cases ([middle grey](#)) and simplex unsolved cases ([light grey](#)) are indistinguishable from the total cohort ([black](#)).

C. **Influence of age of onset on independent walking (total cohort).** The total cohort was divided into four subgroups of equal size according to their age of onset quartiles (Q1<17years, Q2<35years, Q3<45years, Q4>=45years). Later onset is associated with a higher risk to become walking aid dependent earlier in the disease course.

D. **Influence of age of onset on independent walking (genetically confirmed cases).** The effect demonstrated in C was confirmed when only the cases with confirmed genetic diagnoses were included in the analysis.

One affected family member from each family was randomly selected for preparation of this figure to avoid potential bias due to family clustering effects.
Table 1: Baseline characteristics of the HSP cohort

<table>
<thead>
<tr>
<th></th>
<th>Dominant</th>
<th>Recessive</th>
<th>Simplex</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode of inheritance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cases</td>
<td>293 (48%)</td>
<td>72 (12%)</td>
<td>243 (40%)</td>
<td>608 (100%)</td>
</tr>
<tr>
<td>families</td>
<td>222 (43%)</td>
<td>54 (10%)</td>
<td>243 (47%)</td>
<td>519 (100%)</td>
</tr>
<tr>
<td>Genetic etiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>solved cases (% solved)</td>
<td>188 (64%)</td>
<td>43 (60%)</td>
<td>68 (28%)</td>
<td>299 (49%)</td>
</tr>
<tr>
<td>solved families (% solved)</td>
<td>139 (63%)</td>
<td>33 (61%)</td>
<td>68 (28%)</td>
<td>240 (46%)</td>
</tr>
<tr>
<td>Gender distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>153 (52%)</td>
<td>40 (56%)</td>
<td>140 (58%)</td>
<td>333 (55 %)</td>
</tr>
<tr>
<td>female</td>
<td>140 (48%)</td>
<td>32 (44%)</td>
<td>103 (42%)</td>
<td>275 (45%)</td>
</tr>
<tr>
<td>Phenotype^1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pure</td>
<td>159 (54%)</td>
<td>10 (14%)</td>
<td>87 (36%)</td>
<td>256 (42%)</td>
</tr>
<tr>
<td>complicated</td>
<td>134 (46%)</td>
<td>62 (86%)</td>
<td>156 (64%)</td>
<td>352 (58%)</td>
</tr>
<tr>
<td>OR, p value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D vs R: OR</td>
<td>0.14, p <</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S vs D: OR</td>
<td>2.13, p = 0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S vs R: OR 0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p = 0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age of onset (mean / SD)</td>
<td>29.5 / 17.0</td>
<td>25.8 / 17.2</td>
<td>33.9 / 18.9</td>
<td>30.8 / 18.0</td>
</tr>
<tr>
<td>p value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D vs R: n.s.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S vs D: 0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S vs R: 0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at examination (mean / SD)</td>
<td>49.3 / 13.9</td>
<td>44.7 / 16.1</td>
<td>48.3 / 15.5</td>
<td>48.4 / 14.9</td>
</tr>
<tr>
<td>Disease duration (median / IQR)</td>
<td>18 / 18</td>
<td>18 / 20.5</td>
<td>11 / 15</td>
<td>14 / 18</td>
</tr>
<tr>
<td>SPRS-score (mean / SD)</td>
<td>17.4 / 9.5</td>
<td>22.1 / 9.2</td>
<td>18.0 / 9.0</td>
<td>18.2 / 9.4</td>
</tr>
</tbody>
</table>

^1 Pure vs. complicated phenotypes were defined according to the Harding classification.

D – dominant; R – recessive; S – simplex
IQR – inter quartile range; SD – standard deviation

Note: p-values are adjusted for possible clustering effects as detailed in the methods section.

To preserve readability of the table, percentage values were not clustered but reflect the actually observed numbers.
Table 2: Genetic testing in unsolved cases

<table>
<thead>
<tr>
<th>Genetic test</th>
<th>Mode of inheritance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dominant (n=83)</td>
</tr>
<tr>
<td>SPG3</td>
<td>54 (65%)</td>
</tr>
<tr>
<td>SPG4</td>
<td>62 (75%)</td>
</tr>
<tr>
<td>SPG10</td>
<td>38 (46%)</td>
</tr>
<tr>
<td>SPG31</td>
<td>42 (51%)</td>
</tr>
<tr>
<td>SPG5</td>
<td>N/A</td>
</tr>
<tr>
<td>SPG7</td>
<td>N/A</td>
</tr>
<tr>
<td>SPG11</td>
<td>N/A</td>
</tr>
<tr>
<td>SPG15</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Number and proportion of index cases tested negatively for the listed genes are given by mode of inheritance. Only index cases for which no genetic diagnosis could be established (n=279) are included in the analysis.

Table 3: Factors Associated With Disease Severity

<table>
<thead>
<tr>
<th>Factor</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>two-sided p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complicated HSP</td>
<td>3.424</td>
<td>0.6854</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>8.364</td>
<td>1.9817</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Cognitive impairment</td>
<td>7.916</td>
<td>1.9883</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Extrapyramidal involvement</td>
<td>6.495</td>
<td>1.7007</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Peripheral motor involvement</td>
<td>6.215</td>
<td>1.1064</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Dysarthria</td>
<td>5.707</td>
<td>1.1027</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Sensory involvement</td>
<td>1.847</td>
<td>0.7209</td>
<td>0.010</td>
</tr>
<tr>
<td>Ataxia</td>
<td>1.898</td>
<td>0.7837</td>
<td>0.015</td>
</tr>
<tr>
<td>Psychosis</td>
<td>7.469</td>
<td>3.1123</td>
<td>0.016</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>6.973</td>
<td>5.5454</td>
<td>n.s.</td>
</tr>
<tr>
<td>Visual loss</td>
<td>5.919</td>
<td>3.2839</td>
<td>n.s.</td>
</tr>
<tr>
<td>Cataract</td>
<td>2.307</td>
<td>1.7632</td>
<td>n.s.</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Facioskeletal abnormalities</td>
<td>1.162</td>
<td>1.0837</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

n.s. = non-significant

Generalized linear model with SPRS total score as dependent and disease duration, disease duration squared and age of onset as independent variables. The above listed variables were independently entered into the model. GEEs were used to account for possible clustering effects within families.
Figure 1: Age of onset distribution in HSP

A. Age of onset distribution in HSP patients followed a bimodal distribution with a first peak in early childhood (< 5 years in 11%) and a second peak around age 40. The horizontal boxplot on top illustrates the age of onset distribution with minimum, first quartile, median, third quartile and maximum. The mean diamond indicates the mean (30.8 years) and the upper and lower 95% confidence interval of the mean.

B. Age of onset varied in dependence on mode of inheritance with later onset in simplex cases than in dominant or recessive cases. The Y-extent of the irregular shapes indicates the proportion of cases with a particular mode of inheritance (red – dominant; green – recessive; blue – simplex) with a given age of onset (left). The frequency of dominant and recessive inheritance decreases with increasing age of onset (right).

In contrast, negative family history is more frequent with later age of onset. All modes of inheritance however can be observed across the whole age of onset spectrum.

C. Age of onset is influenced by the genotype. Age of onset varies in dependence on the genotype. Median age of onset in years and the interquartile range are given on the right.
One affected family member from each family was randomly selected for preparation of this figure to avoid potential bias due to family clustering effects.
Figure 2: Genotype distribution in the study cohort

A. Genotype distribution in 519 HSP families. Of the 519 HSP families, the diagnosis was genetically confirmed in 240. The number of families for each genotype is listed separated by a semicolon. Autosomal dominant genes are depicted in shades of yellow, autosomal recessive genes in shades of blue and X-linked genes in shades of green.

B. Genotype distribution in HSP cases and families. The table lists the number of cases and families included for each genotype. The total number of solved families/cases is 240/299.

204x226mm (300 x 300 DPI)
Figure 3: Frequency of complicating signs and symptoms

A. Frequency of complicating signs and symptoms. Bars indicate the proportion of patients with a given sign or symptom of the total (n = 519). One affected family member from each family was randomly selected for preparation of this figure to avoid potential bias due to family clustering effects.

B. Complicating signs and symptoms in selected genotypes. Mosaic plots demonstrating the frequency of selected complicating signs and symptoms in the five most common genotypes in our cohort (SPG3, SPG4, SPG5, SPG7, SPG11) are shown. The area of the tiles is proportional to the number of cases within that category. Pairwise comparisons were performed between genotypes. Significant differences (adjusted p < 0.0001) are indicated by horizontal lines on top of each plot; all other comparisons were not significant.
A. Loss of independent walking. HSP cases lose the ability to walk independently after a median disease duration of 22 years (black line). For the subgroups of HSP cases with genetically confirmed diagnosis (middle grey line) and simplex cases without a genetic diagnosis (light grey line) the time course of walking aid dependency is virtually indistinguishable from the total cohort.

B. Wheelchair dependency. After a disease duration of 37 years, one quarter of patients is dependent on a wheelchair (black line). Again, the subgroups of genetically confirmed cases (middle grey) and simplex unsolved cases (light grey) are indistinguishable from the total cohort (black).

C. Influence of age of onset on independent walking (total cohort). The total cohort was divided into four subgroups of equal size according to their age of onset quartiles (Q1<17 years, Q2<35 years, Q3<45 years, Q4>=45 years). Later onset is associated with a higher risk to become walking aid dependent earlier in the disease course.

D. Influence of age of onset on independent walking (genetically confirmed cases). The effect demonstrated in C was confirmed when only the cases with confirmed genetic diagnoses were included in the analysis. One affected family member from each family was randomly selected for preparation of this figure to avoid potential bias due to family clustering effects.

211x205mm (300 x 300 DPI)
Same as Figure 1 colour version
254x490mm (300 x 300 DPI)
A.

Ataxia

Extrapyramidal involvement

Dysarthria

Dysphagia

Peripheral motor involvement

Sensory involvement

B. Cognitive impairment

Same as Figure 3 colour version

204x191mm (300 x 300 DPI)